Sox17 drives functional engraftment of endothelium converted from non-vascular cells

نویسندگان

  • William Schachterle
  • Chaitanya R. Badwe
  • Brisa Palikuqi
  • Balvir Kunar
  • Michael Ginsberg
  • Raphael Lis
  • Masataka Yokoyama
  • Olivier Elemento
  • Joseph M. Scandura
  • Shahin Rafii
چکیده

Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice.

Sox7, Sox17 and Sox18 constitute group F of the Sox family of HMG box transcription factor genes. Dominant-negative mutations in Sox18 underlie the cardiovascular defects observed in ragged mutant mice. By contrast, Sox18(-/-) mice are viable and fertile, and display no appreciable anomaly in their vasculature, suggesting functional compensation by the two other SoxF genes. Here, we provide dir...

متن کامل

SoxF Transcription Factors Are Positive Feedback Regulators of VEGF Signaling.

RATIONALE Vascular endothelial growth factor (VEGF) signaling is a key pathway for angiogenesis and requires highly coordinated regulation. Although the Notch pathway-mediated suppression of excessive VEGF activity via negative feedback is well known, the positive feedback control for augmenting VEGF signaling remains poorly understood. Transcription factor Sox17 is indispensable for angiogenes...

متن کامل

Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis.

RATIONALE The Notch pathway stabilizes sprouting angiogenesis by favoring stalk cells over tip cells at the vascular front. Because tip and stalk cells have different properties in morphology and function, their transcriptional regulation remains to be distinguished. Transcription factor Sox17 is specifically expressed in endothelial cells, but its expression and role at the vascular front rema...

متن کامل

Sox17 is indispensable for acquisition and maintenance of arterial identity

The functional diversity of the arterial and venous endothelia is regulated through a complex system of signalling pathways and downstream transcription factors. Here we report that the transcription factor Sox17, which is known as a regulator of endoderm and hemopoietic differentiation, is selectively expressed in arteries, and not in veins, in the mouse embryo and in mouse postnatal retina an...

متن کامل

Critical early events in hematopoietic cell seeding and engraftment.

Durable hematopoietic stem cell engraftment requires efficient homing to and seeding in the recipient bone marrow. Dissection of cellular and molecular mechanisms by retrospective analysis of functional engraftment studies imposes severe limitations on the understanding of the early stages of this process. We have established an experimental approach for in vivo functional imaging of labeled ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017